

Goal

To improve public safety by utilizing machine learning to recognize vehicles based upon a variety of characteristics such as color, body type, make, and/or license plate.

Design

Neural Network (NN) Subsystem

- > Utilized pre-existing NN architectures
- Mini VGGNet (Body and Color Classifications)
- YoloV8 (Vehicle, Logo, Plate, and Character **Detection**)
- > Exports results to a JSON file for use in the database

Remington Greko, Spencer Hirsch, Thomas Johnson, Alexis Nagle Faculty Advisor(s): Marius Silaghi, Dept. of Electrical Engineering and Computer Science, **Florida Institute of Technology**

Motivation

		VehID	
		Software	9
ute Detect]•[Car Detect	

- >Aid in AMBER alerts, stolen vehicles, and criminal offenses, which tend to rely on pure human interaction to spot and report the specified vehicles.
- **Existing automation only identifies license plate** numbers and is not beneficial when only other characteristics are available.

Database

> Stores vehicle entries detected by the NN subsystem into a JSON format hosted on JBIN. • Includes image path, color, body type, make, plate, camera ID, and timestamp.

Web Application

- > Allows for users to interact with the data in a tabulated display serving as the user interface
- **≻**User functionalities:
- Perform queries to search for vehicles with desired characteristics
- Filter detected vehicle entries to be displayed in the user interface
- Edit and delete detected vehicle car entries
- View saved images for each car entry for manual verification
- >Example Query for any detected **Grey-Silver** vehicles and corresponding results displayed in the modal.

	Show Im
5 grey-silver Hatchback Chrysler Camera1	
6 grey-silver Convertible Chrysler KTED7Z Camera1	Show Im
8 grey-silver Convertible KTE47E Camera1	Show Im
9 grey-silver SUV subaru B3DJRY Camera1, 05:00:25	Show Image
10 grey-silver SUV ford BZR Camera1, 05:00:26	Show Im
12 grey-silver Pick-Up G5Z Camera1, 05:00:55	Show Im
14 grey-silver Pick-Up Z4W Camera1, 05:02:10	Show Im
17 grey-silver VAN kia U24BRY Camera2, 05:00:12	Show Im
18 grey-silver SUV subaru ZRY Camera2, 05:00:13	Show In
21 grey-silver Hatchback G5BZ6 Camera2, 05:00:42	Show In
22 grey-silver Pick-Up Z495M Camera2, 05:02:00	Show In

VehID

> Neural Network Subsystem Tools: • Utilized various Python libraries OpenCV Tensorflow: Keras, Mini VGGNet Model

- > Web Application Tools:
- O 95% positive vehicle predictions
- 45% positive color predictions
- that had predictions)

- >Web Application Evaluation:
- Accurate and timely filter results
- Timely table population

- data
- **JBIN restrictions**

> Further training and tuning on select models with broader datasets to improve performance. >Implement web scraping to automatically populate the database with queries from sources such as AMBER alerts. >In web application implement timed queries to be rechecked against the database automatically. >Incorporate into a network of existing cameras.

Implementation

Ultralytics: YoloV8 models • HTML/CSS, JavaScript, Node

Evaluation Results

> Neural Network Subsystem Evaluation: • 32% positive body type predictions • 47% positive make predictions (out of the ones • 71% had 1 or more attributes correctly predicted • 28% had 2 or more attributes correctly predicted • Accurate and timely query results

Limitations

► Image/Video Quality - Lack of access to higher quality images, and quality discrepancy > Weather/Environmental Factors - Lack of testing in unideal weather conditions / lack of diverse

► Website speed - Response time may be slow due

Improvements